Mechanisms of isoquercitrin attenuates ovalbumin glycation: Investigation by spectroscopy, spectrometry and molecular docking.
Clicks: 229
ID: 64716
2019
This research firstly investigated the inhibitory effect of isoquercitrin (ISQ) on Ovalbumin (OVA) glycation. The mechanism was elucidated through the interaction between OVA and ISQ, and changes in glycation sites and degree of each site as deduced by spectroscopy, spectrometry and molecular docking. ISQ significantly inhibited OVA glycation by attenuating the conformational change induced by glycation. It quenched the fluorescence of Trp via static mechanism, and exposed Trp residues to a more hydrophobic surroundings. Formation of OVA-ISQ complex was a endothermic processing driven by hydrophobic interactions, van der Waals forces and hydrogen bonds. LC-Orbitrap-MS/MS revealed that ISQ altered the location of glycation and alleviated the glycation degree of most sites. Molecular docking results indicated that ISQ inserted into the hydrophobic pocket of OVA with six hydrogen bonds and one π-π stacking formed between ISQ and the amino acid residues of OVA, leading to the altered glycation activity of some sites.
Reference Key |
zhang2019mechanismsfood
Use this key to autocite in the manuscript while using
SciMatic Manuscript Manager or Thesis Manager
|
---|---|
Authors | Zhang, Lu;Xu, Liang;Tu, Zong-Cai;Wang, Hong-Hong;Luo, Juan;Ma, Tian-Xin; |
Journal | Food chemistry |
Year | 2019 |
DOI | S0308-8146(19)31794-7 |
URL | |
Keywords |
Citations
No citations found. To add a citation, contact the admin at info@scimatic.org
Comments
No comments yet. Be the first to comment on this article.