Proteomic analysis of MON810 and comparable non-GM maize varieties grown in agricultural fields.

Clicks: 240
ID: 102603
2011
Article Quality & Performance Metrics
Overall Quality Improving Quality
0.0 /100
Combines engagement data with AI-assessed academic quality
AI Quality Assessment
Not analyzed
Abstract
Worldwide maize is the second major agricultural commodity and around one-fourth is currently biotech, with significant application of the insect resistant event MON810 particularly in the European Union. Grains are the major commercialized part of the plant, and can be harvested after maturity (for food and feed purposes) or at late milky-starchy stage (for forage uses, with the whole plant). We assessed possible proteomic unintended effects of the MON810 transgene using two-dimensional gel electrophoresis coupled to mass spectrometry. To keep in a realistic scenario we used plants grown in agricultural fields in a region where ~50% of maize was MON810, and analyzed grains at milky-starchy stage. In maize, differential transcripts and metabolites between GM and comparable non-GM varieties tend to be variety specific. Thus, we analyzed two variety pairs, DKC6575/Tietar and PR33P67/PR33P66 which are considered representative of Food and Agriculture Organization 700 and 600 varieties commercially grown in the region. MON810 and non-GM milky-starchy grains had virtually identical proteomic patterns, with a very small number of spots showing fold-variations in the 1-1.8 range. They were all variety specific and had divergent identities and functions. Although 2DE allows the analysis of a limited dataset our results support substantial equivalence between MON810 and comparable non-GM varieties.
Reference Key
coll2011proteomictransgenic Use this key to autocite in the manuscript while using SciMatic Manuscript Manager or Thesis Manager
Authors Coll, Anna;Nadal, Anna;Rossignol, Michel;Puigdomènech, Pere;Pla, Maria;
Journal transgenic research
Year 2011
DOI 10.1007/s11248-010-9453-y
URL
Keywords

Citations

No citations found. To add a citation, contact the admin at info@scimatic.org

No comments yet. Be the first to comment on this article.