Examining plant uptake and translocation of emerging contaminants using machine learning: Implications to food security.
Clicks: 293
ID: 94338
2020
Article Quality & Performance Metrics
Overall Quality
Improving Quality
0.0
/100
Combines engagement data with AI-assessed academic quality
Reader Engagement
Popular Article
66.4
/100
293 views
235 readers
Trending
AI Quality Assessment
Not analyzed
Abstract
When water and solutes enter the plant root through the epidermis, organic contaminants in solution either cross the root membranes and transport through the vascular pathways to the aerial tissues or accumulate in the plant roots. The accumulation of contaminants in plant roots and edible tissues is measured by root concentration factor (RCF) and fruit concentration factor (FCF). In this paper, 1) a neural network (NN) was applied to model RCF based on physicochemical properties of organic compounds, 2) correlation and significance of physicochemical properties were assessed using statistical analysis, 3) fuzzy logic was used to examine the simultaneous impacts of significant compound properties on RCF and FCF, 4) a clustering algorithm (k-means) was used to identify unique groups and discover hidden relationships within contaminants in various parts of the plants. The physicochemical cutoffs achieved by fuzzy logic for the RCF and the FCF were compared versus the cutoffs for compounds that crossed the plant root membranes and found their way into transpiration stream (measured by transpiration stream concentration factor, TSCF). The NN predicted the RCF with improved accuracy compared to mechanistic models. The analysis indicated that log K, molecular weight, and rotatable bonds are the most important properties for predicting the RCF. These significant compound properties are positively correlated with RCF while they are negatively correlated with TSCF. Comparing the relationships between compound properties in various plant tissues showed that compounds detected in the edible parts have physicochemical cutoffs that are more like the compounds crossing the plant root membranes (into xylem tissues) than the compounds accumulating in the plant roots, with clear relationships to food security. The cluster analysis placed the contaminants into three meaningful groups that were in agreement with the results of fuzzy logic.Reference Key |
bagheri2020examiningthe
Use this key to autocite in the manuscript while using
SciMatic Manuscript Manager or Thesis Manager
|
---|---|
Authors | Bagheri, Majid;Al-Jabery, Khalid;Wunsch, Donald;Burken, Joel G; |
Journal | The Science of the total environment |
Year | 2020 |
DOI | S0048-9697(19)33976-2 |
URL | |
Keywords |
Citations
No citations found. To add a citation, contact the admin at info@scimatic.org
Comments
No comments yet. Be the first to comment on this article.