design of a broadband tunable terahertz metamaterial absorber based on complementary structural graphene

Clicks: 168
ID: 238537
2018
We present a simple design for a broadband tunable terahertz (THz) metamaterial absorber (MMA) consisting of a complementary cross-oval-shaped graphene (CCOSG) structure and dielectric substrate placed on a continuous metal film. Both numerical simulation and theoretical calculation results indicate that the absorbance is greater than 80% from 1.2 to 1.8 THz, and the corresponding relative bandwidth is up to 40%. Simulated electric field and power loss density distributions reveal that the broadband absorption mainly originates from the excitation of continuous surface plasmon resonance (SPR) on the CCOSG. In addition, the MMA is polarization-insensitive for both transverse-electric (TE) and transverse-magnetic (TM) modes due to the geometry rotational symmetry of the unit-cell structure. Furthermore, the broadband absorption properties of the designed MMA can be effectively tunable by varying the geometric parameters of the unit-cell and chemical potential of graphene. Our results may find promising applications in sensing, detecting, and optoelectronic-related devices.
Reference Key
huang2018materialsdesign Use this key to autocite in the manuscript while using SciMatic Manuscript Manager or Thesis Manager
Authors ;Mu Lin Huang;Yong Zhi Cheng;Zheng Ze Cheng;Hao Ran Chen;Xue Song Mao;Rong Zhou Gong
Journal Nature Materials
Year 2018
DOI 10.3390/ma11040540
URL
Keywords

Citations

No citations found. To add a citation, contact the admin at info@scimatic.org

No comments yet. Be the first to comment on this article.