An as-cast high-entropy alloy with remarkable mechanical properties strengthened by nanometer precipitates.

Clicks: 161
ID: 94640
2020
High-entropy alloys (HEAs) with good ductility and high strength are usually prepared by a combination of forging and heat-treatment processes. In comparison, the as-cast HEAs typically do not reach strengths similar to those of HEAs produced by the forging and heat-treatment processes. Here we report a novel equiatomic-ratio CoCrCuMnNi HEA prepared by vacuum arc melting. We observe that this HEA has excellent mechanical properties, i.e., a yield strength of 458 MPa, and an ultimate tensile strength of 742 MPa with an elongation of 40%. Many nanometer precipitates (5-50 nm in size) and domains (5-10 nm in size) are found in the inter-dendrite and dendrite zones of the produced HEA, which is the key factor for its excellent mechanical properties. The enthalpy of mixing between Cu and Mn, Cr, Co, or Ni is higher than those of mixing between any two of Cr, Co, Ni and Mn, which leads to the separation of Cu from the CoCrCuMnNi HEA. Furthermore, we reveal the nanoscale-precipitate-phase-forming mechanism in the proposed HEA.
Reference Key
qin2020annanoscale Use this key to autocite in the manuscript while using SciMatic Manuscript Manager or Thesis Manager
Authors Qin, Gang;Chen, Ruirun;Liaw, Peter K;Gao, Yanfei;Wang, Liang;Su, Yanqing;Ding, Hongsheng;Guo, Jingjie;Li, Xiaoqing;
Journal Nanoscale
Year 2020
DOI 10.1039/c9nr08338c
URL
Keywords

Citations

No citations found. To add a citation, contact the admin at info@scimatic.org

No comments yet. Be the first to comment on this article.