Design and Evaluation of a Surface Electromyography-Controlled Steering Assistance Interface.

Clicks: 189
ID: 39946
2019
Article Quality & Performance Metrics
Overall Quality Improving Quality
0.0 /100
Combines engagement data with AI-assessed academic quality
AI Quality Assessment
Not analyzed
Abstract
Millions of drivers could experience shoulder muscle overload when rapidly rotating steering wheels and reduced steering ability at increased steering wheel angles. In order to address these issues for drivers with disability, surface electromyography (sEMG) sensors measuring biceps brachii muscle activity were incorporated into a steering assistance system for remote steering wheel rotation. The path-following accuracy of the sEMG interface with respect to a game steering wheel was evaluated through driving simulator trials. Human participants executed U-turns with differing radii of curvature. For a radius of curvature equal to the minimum vehicle turning radius of 3.6 m, the sEMG interface had significantly greater accuracy than the game steering wheel, with intertrial median lateral errors of 0.5 m and 1.2 m, respectively. For a U-turn with a radius of 7.2 m, the sEMG interface and game steering wheel were comparable in accuracy, with respective intertrial median lateral errors of 1.6 m and 1.4 m. The findings of this study could be utilized to realize accurate sEMG-controlled automobile steering for persons with disability.
Reference Key
nacpil2019designsensors Use this key to autocite in the manuscript while using SciMatic Manuscript Manager or Thesis Manager
Authors Nacpil, Edric John Cruz;Wang, Zheng;Zheng, Rencheng;Kaizuka, Tsutomu;Nakano, Kimihiko;
Journal Sensors (Basel, Switzerland)
Year 2019
DOI E1308
URL
Keywords Keywords not found

Citations

No citations found. To add a citation, contact the admin at info@scimatic.org

No comments yet. Be the first to comment on this article.