Substrate viscosity plays an important role in bacterial adhesion under fluid flow.
Clicks: 251
ID: 33348
2019
Article Quality & Performance Metrics
Overall Quality
Improving Quality
0.0
/100
Combines engagement data with AI-assessed academic quality
Reader Engagement
Steady Performance
76.5
/100
251 views
201 readers
Trending
AI Quality Assessment
Not analyzed
Abstract
Many materials used in the medical settings such as catheters and contact lenses as well as most biological tissues are not purely elastic, but rather viscoelastic. While substrate elasticity has been investigated for its influence on bacterial adhesion, the impact of substrate viscosity has not been explored. Here, the importance of considering substrate viscosity is explored by using polydimethylsiloxane (PDMS) as the substrate material, whose mechanical properties can be tuned from predominantly elastic to viscous by varying cross-linking degree. Interfacial rheology and atomic force microscopy analysis prove that PDMS with a low cross-linking degree exhibits both low stiffness and high viscosity. This degree of viscoelasticity confers to PDMS a remarkable stress relaxation, a good capability to deform and an increased adhesive force. Bacterial adhesion assays were conducted under flow conditions to study the impact of substrate viscosity on Escherichia coli adhesion. The viscous PDMS not only enhanced E. coli adhesion but also conferred greater resistance to desorption against shear stress at air/liquid interface, compared to the PDMS with high crosslinking degree. These findings highlight the importance to consider substrate viscosity while studying bacterial adhesion. The current work provides new insights to an improved understanding of how bacteria interact with complex viscoelastic environments.Reference Key |
valentin2019substratejournal
Use this key to autocite in the manuscript while using
SciMatic Manuscript Manager or Thesis Manager
|
---|---|
Authors | Valentin, Jules D P;Qin, Xiao-Hua;Fessele, Claudia;Straub, Hervé;van der Mei, Henny C;Buhmann, Matthias T;Maniura-Weber, Katharina;Ren, Qun; |
Journal | Journal of colloid and interface science |
Year | 2019 |
DOI | S0021-9797(19)30597-1 |
URL | |
Keywords | Keywords not found |
Citations
No citations found. To add a citation, contact the admin at info@scimatic.org
Comments
No comments yet. Be the first to comment on this article.