PIN-mediated polar auxin transport facilitates root-obstacle avoidance.

Clicks: 48
ID: 276606
2020
Article Quality & Performance Metrics
Overall Quality Improving Quality
0.0 /100
Combines engagement data with AI-assessed academic quality
AI Quality Assessment
Not analyzed
Abstract
Plants sense mechanical stimuli to recognise nearby obstacles and change their growth patterns to adapt to the surrounding environment. When roots encounter an obstacle, they rapidly bend away from the impenetrable surface and find the edge of the barrier. However, the molecular mechanisms underlying root-obstacle avoidance are largely unknown. Here, we demonstrate that PIN-FORMED (PIN)-mediated polar auxin transport facilitates root bending during obstacle avoidance. We analysed two types of bending after roots touched barriers. In auxin receptor mutants, the rate of root movement during first bending was largely delayed. Gravity-oriented second bending was also disturbed in these mutants. The reporter assays showed that asymmetrical auxin responses occurred in the roots during obstacle avoidance. Pharmacological analysis suggested that polar auxin transport mediates local auxin accumulation. We found that PINs are required for auxin-assisted root bending during obstacle avoidance. We propose that rapid root movement during obstacle avoidance is not just a passive but an active bending completed through polar auxin transport. Our findings suggest that auxin plays a role in thigmotropism during plant-obstacle interactions.
Reference Key
lee2020pinmediatedthe Use this key to autocite in the manuscript while using SciMatic Manuscript Manager or Thesis Manager
Authors Lee, Hyo-Jun;Kim, Hyun-Soon;Park, Jeong Mee;Cho, Hye Sun;Jeon, Jae Heung;
Journal The New phytologist
Year 2020
DOI 10.1111/nph.16076
URL
Keywords

Citations

No citations found. To add a citation, contact the admin at info@scimatic.org

No comments yet. Be the first to comment on this article.