Corrosion Behaviour and J774A.1 Macrophage Response to Hyaluronic Acid Functionalization of Electrochemically Reduced Graphene Oxide on Biomedical Grade CoCr

Clicks: 223
ID: 268473
2021
Article Quality & Performance Metrics
Overall Quality Improving Quality
0.0 /100
Combines engagement data with AI-assessed academic quality
AI Quality Assessment
Not analyzed
Abstract
Improvements in the lubrication of metal–metal joint prostheses are of great clinical interest in order to minimize the particles released during wear–corrosion processes. In this work, electrochemically reduced graphene oxide (ErGO) on CoCr was functionalized with hyaluronic acid (ErGOHA). Functionalization was carried out by soaking for 24 h in phosphate buffer saline (PBS) solution containing 3 g/L hyaluronic acid (HA). The corrosion performance of CoCrErGO and CoCrErGOHA surfaces was studied by electrochemical impedance spectroscopy (EIS) for 7 days in PBS. Biocompatibility and cytotoxicity were studied in mouse macrophages J774A.1 cell line by the measurement of mitochondrial activity (WST-1 assay) and plasma membrane damage (LDH assay). The inflammatory response was examined through TNF-α and IL-10 cytokines in macrophages culture supernatants, used as indicators of pro-inflammatory and anti-inflammatory responses, respectively. EIS diagrams of CoCrErGOHA revealed two time constants: the first one, attributed to the hydration and diffusion processes of the HA layer adsorbed on ErGO, and the second one, the corrosion resistance of ErGOHA/CoCr interface. Macrophage assays showed better behavior on CoCrErGOHA than CoCr and CoCrErGO surfaces based on their biocompatible, cytotoxic, and inflammatory responses. Comparative analysis of IL-10 showed that functionalization with HA induces higher values of anti-inflammatory cytokine, suggesting an improvement in inflammatory behavior.
Reference Key
chico2021metalscorrosion Use this key to autocite in the manuscript while using SciMatic Manuscript Manager or Thesis Manager
Authors Belén Chico;Blanca Teresa Pérez-Maceda;Sara San José;María Lorenza Escudero;María Cristina García-Alonso;Rosa María Lozano;Chico, Belén;Pérez-Maceda, Blanca Teresa;San José, Sara;Escudero, María Lorenza;García-Alonso, María Cristina;Lozano, Rosa María;
Journal metals
Year 2021
DOI 10.3390/met11071078
URL
Keywords

Citations

No citations found. To add a citation, contact the admin at info@scimatic.org

No comments yet. Be the first to comment on this article.