crystal structure of peroxiredoxin 3 from vibrio vulnificus and its implications for scavenging peroxides and nitric oxide
Clicks: 258
ID: 174752
2018
Article Quality & Performance Metrics
Overall Quality
Improving Quality
0.0
/100
Combines engagement data with AI-assessed academic quality
Reader Engagement
Emerging Content
0.6
/100
2 views
2 readers
Trending
AI Quality Assessment
Not analyzed
Abstract
Peroxiredoxins (Prxs) are ubiquitous cysteine-based peroxidase enzymes. Recently, a new type of Prx, VvPrx3, was identified in the pathogenic bacterium Vibrio vulnificus as being important for survival in macrophages. It employs only one catalytic cysteine residue to decompose peroxides. Here, crystal structures of VvPrx3 representing its reduced and oxidized states have been determined, together with an H2O2-bound structure, at high resolution. The crystal structure representing the reduced Prx3 showed a typical dimeric interface, called the A-type interface. However, VvPrx3 forms an oligomeric interface mediated by a disulfide bond between two catalytic cysteine residues from two adjacent dimers, which differs from the doughnut-like oligomers that appear in most Prxs. Subsequent biochemical studies showed that this disulfide bond was induced by treatment with nitric oxide (NO) as well as with peroxides. Consistently, NO treatment induced expression of the prx3 gene in V. vulnificus, and VvPrx3 was crucial for the survival of bacteria in the presence of NO. Taken together, the function and mechanism of VvPrx3 in scavenging peroxides and NO stress via oligomerization are proposed. These findings contribute to the understanding of the diverse functions of Prxs during pathogenic processes at the molecular level.Reference Key |
ahn2018iucrjcrystal
Use this key to autocite in the manuscript while using
SciMatic Manuscript Manager or Thesis Manager
|
---|---|
Authors | ;Jinsook Ahn;Kyung Ku Jang;Inseong Jo;Hasan Nurhasni;Jong Gyu Lim;Jin-Wook Yoo;Sang Ho Choi;Nam-Chul Ha |
Journal | european journal of orthopaedic surgery & traumatology : orthopedie traumatologie |
Year | 2018 |
DOI | 10.1107/S205225251701750X |
URL | |
Keywords |
Citations
No citations found. To add a citation, contact the admin at info@scimatic.org
Comments
No comments yet. Be the first to comment on this article.