A non-dominated sorting Differential Search Algorithm Flux Balance Analysis (ndsDSAFBA) for in silico multiobjective optimization in identifying reactions knockout.

Clicks: 245
ID: 15152
2019
Article Quality & Performance Metrics
Overall Quality Improving Quality
0.0 /100
Combines engagement data with AI-assessed academic quality
AI Quality Assessment
Not analyzed
Abstract
Metabolic engineering is defined as improving the cellular activities of an organism by manipulating the metabolic, signal or regulatory network. In silico reaction knockout simulation is one of the techniques applied to analyse the effects of genetic perturbations on metabolite production. Many methods consider growth coupling as the objective function, whereby it searches for mutants that maximise the growth and production rate. However, the final goal is to increase the production rate. Furthermore, they produce one single solution, though in reality, cells do not focus on one objective and they need to consider various different competing objectives. In this work, a method, termed ndsDSAFBA (non-dominated sorting Differential Search Algorithm and Flux Balance Analysis), has been developed to find the reaction knockouts involved in maximising the production rate and growth rate of the mutant, by incorporating Pareto dominance concepts. The proposed ndsDSAFBA method was validated using three genome-scale metabolic models. We obtained a set of non-dominated solutions, with each solution representing a different mutant strain. The results obtained were compared with the single objective optimisation (SOO) and multi-objective optimisation (MOO) methods. The results demonstrate that ndsDSAFBA is better than the other methods in terms of production rate and growth rate.
Reference Key
daud2019acomputers Use this key to autocite in the manuscript while using SciMatic Manuscript Manager or Thesis Manager
Authors Daud, Kauthar Mohd;Mohamad, Mohd Saberi;Zakaria, Zalmiyah;Hassan, Rohayanti;Shah, Zuraini Ali;Deris, Safaai;Ibrahim, Zuwairie;Napis, Suhaimi;Sinnott, Richard O;
Journal Computers in biology and medicine
Year 2019
DOI S0010-4825(19)30267-7
URL
Keywords Keywords not found

Citations

No citations found. To add a citation, contact the admin at info@scimatic.org

No comments yet. Be the first to comment on this article.