(Z)-3-Hexen-1-ol accumulation enhances hyperosmotic stress tolerance in Camellia sinensis.

Clicks: 207
ID: 106368
2020
Article Quality & Performance Metrics
Overall Quality Improving Quality
0.0 /100
Combines engagement data with AI-assessed academic quality
AI Quality Assessment
Not analyzed
Abstract
Volatile components in fresh leaves are involved in the regulation of many stress responses, such as insect damage, fungal infection and high temperature. However, the potential function of volatile components in hyperosmotic response is largely unknown. Here, we found that 7-day hyperosmotic treatment specifically led to the accumulation of (Z)-3-hexen-1-ol, (E)-2-hexenal and methyl salicylate. Transcriptome and qRT-PCR analyses suggested the activation of linolenic acid degradation and methyl salicylate processes. Importantly, exogenous (Z)-3-hexen-1-ol pretreatment dramatically enhanced the hyperosmotic stress tolerance of tea plants and decreased stomatal conductance, whereas (E)-2-hexenal and methyl salicylate pretreatments did not exhibit such a function. qRT-PCR analysis revealed that exogenous ABA induced the expressions of related enzyme genes, and (Z)-3-hexen-1-ol could up-regulate the expressions of many DREB and RD genes. Moreover, exogenous (Z)-3-hexen-1-ol tremendously induced the expressions of specific LOX and ADH genes within 24Ā h. Taken together, hyperosmotic stress induced (Z)-3-hexen-1-ol accumulation in tea plant via the activation of most LOX, HPL and ADH genes, while (Z)-3-hexen-1-ol could dramatically enhance the hyperosmotic stress tolerance via the decrease of stomatal conductance and MDA, accumulation of ABA and proline, activation of DREB and RD gene expressions, and probably positive feedback regulation of LOXs and ADHs. KEY MESSAGE: Hyperosmotic stress induced (Z)-3-hexen-1-ol accumulation in Camellia sinensis via the up-regulation of most LOX, HPL and ADH genes, while (Z)-3-hexen-1-ol could dramatically enhance the hyperosmotic stress tolerance via the decrease of stomatal conductance, accumulation of proline, activation of DREB and RD gene expressions, and probably positive feedback regulation of LOXs and ADHs.
Reference Key
hu2020z3hexen1olplant Use this key to autocite in the manuscript while using SciMatic Manuscript Manager or Thesis Manager
Authors Hu, Shuangling;Chen, Qinghua;Guo, Fei;Wang, Mingle;Zhao, Hua;Wang, Yu;Ni, Dejiang;Wang, Pu;
Journal plant molecular biology
Year 2020
DOI 10.1007/s11103-020-00992-2
URL
Keywords

Citations

No citations found. To add a citation, contact the admin at info@scimatic.org

No comments yet. Be the first to comment on this article.