Deregulation of cell growth and apoptosis in UV-induced melanomagenesis.
Clicks: 190
ID: 98795
2020
Article Quality & Performance Metrics
Overall Quality
Improving Quality
0.0
/100
Combines engagement data with AI-assessed academic quality
Reader Engagement
Emerging Content
0.3
/100
1 views
1 readers
Trending
AI Quality Assessment
Not analyzed
Abstract
We have previously characterized the role of p16/Rb in coordinating the early events in UVB-irradiated skin. As an extension to this work, normal melanocytes and mutant p16-inducible melanoma cell models were employed to elucidate further the coordinated molecular mechanisms occurring during early UVB exposure. Our results showed that melanocytes expressed p16 only at a high UVB dose, with undetectable p53. The Bax/Bcl2 ratio increased at higher dose, indicating that the cells had selected apoptosis program. In the wt-p16 melanoma cells, while low UVB dose upregulated p16, the high dose suppressed it, and further abrogated Cdk6 but not Cdk4. Interestingly, while induction of mutant-p16 increased Cdk4, cdk6 and pRb proteins, UVB exposure did not affect this increase. More interestingly, p16 mutant cells increased their resistance to apoptosis at high UVB-dose, associated with decreased Bax and increased Bcl2 expression. Thus, mutant-p16 appears to dictate a deregulation of cell cycle and increased resistance to apoptosis in melanoma cells. Together, the data indicate a deregulation of p16INK4/Rb pathway as an early event in UVB-induced melanomagenesis.Reference Key |
ouhtit2020deregulationfrontiers
Use this key to autocite in the manuscript while using
SciMatic Manuscript Manager or Thesis Manager
|
---|---|
Authors | Ouhtit, Allal;Gupta, Ishita;Gaur, Rajiv L;Fernando, Augusta;Abd El-Azim, Amira O;Eid, Ali; |
Journal | Frontiers in bioscience (Elite edition) |
Year | 2020 |
DOI | DOI not found |
URL | URL not found |
Keywords |
Citations
No citations found. To add a citation, contact the admin at info@scimatic.org
Comments
No comments yet. Be the first to comment on this article.