Using Genotyping by Sequencing to Map Two Novel Anthracnose Resistance Loci in Sorghum bicolor

Clicks: 218
ID: 98345
2016
Article Quality & Performance Metrics
Overall Quality Improving Quality
0.0 /100
Combines engagement data with AI-assessed academic quality
AI Quality Assessment
Not analyzed
Abstract
Colletotrichum sublineola is an aggressive fungal pathogen that causes anthracnose in sorghum [Sorghum bicolor (L.) Moench]. The obvious symptoms of anthracnose are leaf blight and stem rot. Sorghum, the fifth most widely grown cereal crop in the world, can be highly susceptible to the disease, most notably in hot and humid environments. In the southeastern United States the acreage of sorghum has been increasing steadily in recent years, spurred by growing interest in producing biofuels, bio-based products, and animal feed. Resistance to anthracnose is, therefore, of paramount importance for successful sorghum production in this region. To identify anthracnose resistance loci present in the highly resistant cultivar ‘Bk7’, a biparental mapping population of F3:4 and F4:5 sorghum lines was generated by crossing ‘Bk7’ with the susceptible inbred ‘Early Hegari-Sart’. Lines were phenotyped in three environments and in two different years following natural infection. The population was genotyped by sequencing. Following a stringent custom filtering protocol, totals of 5186 and 2759 informative SNP markers were identified in the two populations. Segregation data and association analysis identified resistance loci on chromosomes 7 and 9, with the resistance alleles derived from ‘Bk7’. Both loci contain multiple classes of defense-related genes based on sequence similarity and gene ontologies. Genetic analysis following an independent selection experiment of lines derived from a cross between ‘Bk7’ and sweet sorghum ‘Mer81-4’ narrowed the resistance locus on chromosome 9 substantially, validating this QTL. As observed in other species, sorghum appears to have regions of clustered resistance genes. Further characterization of these regions will facilitate the development of novel germplasm with resistance to anthracnose and other diseases.
Reference Key
felderhoff2016usingg3 Use this key to autocite in the manuscript while using SciMatic Manuscript Manager or Thesis Manager
Authors Felderhoff, Terry J.;McIntyre, Lauren M.;Saballos, Ana;Vermerris, Wilfred;
Journal g3: genes, genomes, genetics
Year 2016
DOI DOI not found
URL
Keywords

Citations

No citations found. To add a citation, contact the admin at info@scimatic.org

No comments yet. Be the first to comment on this article.