Elucidating the molecular pathways and immune system transcriptome during ischemia-reperfusion injury in renal transplantation.
Clicks: 275
ID: 98246
2020
Article Quality & Performance Metrics
Overall Quality
Improving Quality
0.0
/100
Combines engagement data with AI-assessed academic quality
Reader Engagement
Steady Performance
69.9
/100
275 views
220 readers
Trending
AI Quality Assessment
Not analyzed
Abstract
Ischemia reperfusion injury (IRI) is a major challenge for renal transplantation. This study was performed to explore the mechanisms and potential molecular targets involved in renal IRI. In this study, the gene datasets GSE43974 and GSE126805 from the Gene Expression Omnibus database, which include ischemic and reperfused renal specimens, were analyzed to determine differentially expressed genes (DEGs). Gene ontology annotations, Kyoto Encyclopedia of Genes and Genomes analysis, and gene set enrichment analysis were performed to determine the pathways that are significantly enriched during ischemia and reperfusion. We also determined the microenvironment cell types xCell and performed correlation analyses to reveal the relationship between the molecular pathways and microenvironment cell infiltration. We found 77 DEGs (76 up- and 1 downregulated) and 323 DEGs (312 up- and 11 downregulated) in the GSE43974 and GSE126805 datasets, respectively. Similar signaling pathway enrichment patterns were observed between the two datasets. The combined analyses demonstrate that the NOD-like receptor signaling pathway and its two downstream signaling pathways, MAPK and NF-kβ, are the major significantly enriched pathways. The xCell analysis identified immune cells that are significantly changed after reperfusion, including hematopoietic stem cells, M2 macrophages, monocytes, Treg cells, conventional dendritic cells, and pro B-cells. Enrichment scores of the NOD-like receptor signaling pathway and its downstream pathways during IRI was significantly correlated with the change levels in class-switched memory B-cell and hematopoietic stem cells in both datasets. These data reveal the important role of the NOD-like receptor signaling pathway during IRI, and the close relationship between this pathway and infiltration of specific immune cell types. Our data provide compelling insights into the pathogenesis and potential therapeutic targets for renal IRI.Reference Key |
zhang2020elucidatinginternational
Use this key to autocite in the manuscript while using
SciMatic Manuscript Manager or Thesis Manager
|
---|---|
Authors | Zhang, Jinhua;Wei, Xiangling;Tang, Zuofu;Miao, Bin;Luo, Yingxun;Hu, Xiao;Luo, You;Zhou, Yu;Na, Ning; |
Journal | international immunopharmacology |
Year | 2020 |
DOI | S1567-5769(19)32740-7 |
URL | |
Keywords |
Citations
No citations found. To add a citation, contact the admin at info@scimatic.org
Comments
No comments yet. Be the first to comment on this article.