Volumetric Segmentation Neural Networks Improves Neutron Crystallography Data Analysis.

Clicks: 236
ID: 96578
2019
Crystallography is the powerhouse technique for molecular structure determination, with applications in fields ranging from energy storage to drug design. Accurate structure determination, however, relies partly on determining the precise locations and integrated intensities of Bragg peaks in the resulting data. Here, we describe a method for Bragg peak integration that is accomplished using neural networks. The network is based on a U-Net and identifies peaks in three-dimensional reciprocal space through segmentation, allowing prediction of the full 3D peak shape from noisy data that is commonly difficult to process. The procedure for generating appropriate training sets is detailed. Trained networks achieve Dice coefficients of 0.82 and mean IoUs of 0.69. Carrying out integration over entire datasets, it is demonstrated that integrating neural network-predicted peaks results in improved intensity statistics. Furthermore, using a second dataset, the possibility of transfer learning between datasets is shown. Given the ubiquity and growing complexity of crystallography, we anticipate integration by machine learning to play an increasingly important role across the physical sciences. These early results demonstrate the applicability of deep learning techniques for integrating crystallography data and suggest a possible role in the next generation of crystallography experiments.
Reference Key
sullivan2019volumetricieeeacm Use this key to autocite in the manuscript while using SciMatic Manuscript Manager or Thesis Manager
Authors Sullivan, Brendan;Langan, Patricia S;Archibald, Rick;Coates, Leighton;Vadavasi, Venu Gopal;Lynch, Vickie;
Journal ieee/acm international symposium on cluster, cloud and grid computing ieee/acm international symposium on cluster, cloud, and grid computing
Year 2019
DOI 10.1109/CCGRID.2019.00070
URL
Keywords

Citations

No citations found. To add a citation, contact the admin at info@scimatic.org

No comments yet. Be the first to comment on this article.