Structural, impedance and Mössbauer studies of magnesium ferrite synthesized via solâgel auto-combustion process
Clicks: 87
ID: 95078
2017
Article Quality & Performance Metrics
Overall Quality
Improving Quality
0.0
/100
Combines engagement data with AI-assessed academic quality
Reader Engagement
Emerging Content
0.3
/100
1 views
1 readers
Trending
AI Quality Assessment
Not analyzed
Abstract
Crystalline magnesium ferrite (MgFe2O4) spinel oxide powder was synthesized by nitrateâcitrate solâgel auto-combustion process with stoichiometric composition of metal nitrate salts, urea and citric acid. The study was focused on the modification of synthesis conditions and effect of these modified conditions on the structural and electrical properties of synthesized MgFe2O4 ceramic materials. Phase composition, crystallinity, structure and surface morphology were studied by X-ray diffraction, FTIR and SEM. Pure single phase MgFe2O4 spinel ferrite was obtained after calcination at 850 °C. Rietveld refinement of XRD result confirmed the single cubic phase spinel oxide with the lattice constant of a = 8.3931 à and Fd3m symmetry. UVâvisible absorption study of calcined powder revealed an optical band gap of 2.17 eV. SEM images of sintered specimens (1050â1450 °C) showed that the grain size increased with the increase in sintering temperature. From the impedance results of the sintered MgFe2O4 specimens, it was found that the resistance of grain, grain boundary and electrode effect decreased with an increase in sintering temperature and associated grain growth. In the intermediate frequency region lowering of impedance and dielectric values was observed due to the decrease in grain boundary areas. Mössbauer studies indicated that magnesium ferrite had a mixed spinel structure in calcined and sintered samples, however, the well refined single phase MgFe2O4 was observed due to well developed high crystalline structure at 1350 °C and 1450 °C. Keywords: Solâgel auto-combustion, Magnesium ferrite, X-ray diffraction, SEM, Mössbauer spectroscopy, Impedance spectroscopyReference Key |
durrani2017structuraljournal
Use this key to autocite in the manuscript while using
SciMatic Manuscript Manager or Thesis Manager
|
---|---|
Authors | Durrani, Shahid Khan;Naz, Sumaira;Mehmood, Mazhar;Nadeem, Muhammad;Siddique, Muhammad; |
Journal | journal of saudi chemical society |
Year | 2017 |
DOI | DOI not found |
URL | |
Keywords |
Citations
No citations found. To add a citation, contact the admin at info@scimatic.org
Comments
No comments yet. Be the first to comment on this article.