A Novel Design to Enhance the Mechanical Properties in Cu-Bearing Antibacterial Stainless Steel.
Clicks: 158
ID: 94648
2020
Article Quality & Performance Metrics
Overall Quality
Improving Quality
0.0
/100
Combines engagement data with AI-assessed academic quality
Reader Engagement
Emerging Content
0.6
/100
2 views
2 readers
Trending
AI Quality Assessment
Not analyzed
Abstract
A novel method based on nano-scale precipitation hardening has been studied to strengthen copper-bearing ferrite antibacterial stainless steel. Bimodal precipitations can be observed after antibacterial annealing and low temperature aging treatment, which are large rod-shaped precipitates and nano-sized spherical precipitates, respectively. Due to two different morphological precipitates, the strength of the material is significantly improved without sacrificing formability, and at the same time, the excellent antibacterial properties remain. Under low temperature aging treatment, there is no obvious evidence to show the segregation at the interface between the rod-shaped copper precipitation and the matrix due to the low segregation coefficient of copper. The nano-sized copper precipitation uniformly nucleated and distributed on the matrix. The optimized heat treatment process is antibacterial annealing at 800 °C for half an hour followed by one-hour-aging treatment at 550 °C.Reference Key |
sun2020amaterials
Use this key to autocite in the manuscript while using
SciMatic Manuscript Manager or Thesis Manager
|
---|---|
Authors | Sun, Shaoheng;Xue, Zhiyong;An, Licong;Chen, Xiaohua;Liu, Yifei; |
Journal | Materials (Basel, Switzerland) |
Year | 2020 |
DOI | E403 |
URL | |
Keywords |
Citations
No citations found. To add a citation, contact the admin at info@scimatic.org
Comments
No comments yet. Be the first to comment on this article.