Plasma wakefield acceleration for ultrahigh-energy cosmic rays.
Clicks: 153
ID: 93947
2002
Article Quality & Performance Metrics
Overall Quality
Improving Quality
0.0
/100
Combines engagement data with AI-assessed academic quality
Reader Engagement
Emerging Content
0.3
/100
1 views
1 readers
Trending
AI Quality Assessment
Not analyzed
Abstract
A cosmic acceleration mechanism is introduced which is based on the wakefields excited by the Alfvén shocks in a relativistically flowing plasma. We show that there exists a threshold condition for transparency below which the accelerating particle is collision-free and suffers little energy loss in the plasma medium. The stochastic encounters of the random accelerating-decelerating phases results in a power-law energy spectrum: f(epsilon) proportional, variant 1/epsilon(2). As an example, we discuss the possible production in the atmosphere of gamma ray bursts of ultrahigh-energy cosmic rays (UHECR) exceeding the Greisen-Zatsepin-Kuzmin cutoff. The estimated event rate in our model agrees with that from UHECR observations.Reference Key |
chen2002plasmaphysical
Use this key to autocite in the manuscript while using
SciMatic Manuscript Manager or Thesis Manager
|
---|---|
Authors | Chen, Pisin;Tajima, Toshiki;Takahashi, Yoshiyuki; |
Journal | physical review letters |
Year | 2002 |
DOI | DOI not found |
URL | URL not found |
Keywords | Keywords not found |
Citations
No citations found. To add a citation, contact the admin at info@scimatic.org
Comments
No comments yet. Be the first to comment on this article.