General-Purpose Quantum Circuit Simulator with Projected Entangled-Pair States and the Quantum Supremacy Frontier.
Clicks: 295
ID: 93698
2019
Recent advances on quantum computing hardware have pushed quantum computing to the verge of quantum supremacy. Here, we bring together many-body quantum physics and quantum computing by using a method for strongly interacting two-dimensional systems, the projected entangled-pair states, to realize an effective general-purpose simulator of quantum algorithms. The classical computing complexity of this simulator is directly related to the entanglement generation of the underlying quantum circuit rather than the number of qubits or gate operations. We apply our method to study random quantum circuits, which allows us to quantify precisely the memory usage and the time requirements of random quantum circuits. We demonstrate our method by computing one amplitude for a 7×7 lattice of qubits with depth (1+40+1) on the Tianhe-2 supercomputer.
Reference Key |
guo2019generalpurposephysical
Use this key to autocite in the manuscript while using
SciMatic Manuscript Manager or Thesis Manager
|
---|---|
Authors | Guo, Chu;Liu, Yong;Xiong, Min;Xue, Shichuan;Fu, Xiang;Huang, Anqi;Qiang, Xiaogang;Xu, Ping;Liu, Junhua;Zheng, Shenggen;Huang, He-Liang;Deng, Mingtang;Poletti, Dario;Bao, Wan-Su;Wu, Junjie; |
Journal | physical review letters |
Year | 2019 |
DOI | 10.1103/PhysRevLett.123.190501 |
URL | |
Keywords |
Citations
No citations found. To add a citation, contact the admin at info@scimatic.org
Comments
No comments yet. Be the first to comment on this article.