Polymeric Core-Shell Combinatorial Nanomedicine for Synergistic Anticancer Therapy.

Clicks: 231
ID: 78502
2019
Article Quality & Performance Metrics
Overall Quality Improving Quality
0.0 /100
Combines engagement data with AI-assessed academic quality
AI Quality Assessment
Not analyzed
Abstract
Core-shell nanostructures are promising platforms for combination drug delivery. However, their complicated synthesis process, poor stability, surface engineering, and low biocompatibility are major hurdles. Herein, a carboxymethyl chitosan-coated poly(lactide--glycolide) (cmcPLGA) core-shell nanostructure is prepared via a simple one-step nanoprecipitation self-assembly process. Engineered core-shell nanostructures are tested for combination delivery of loaded docetaxel and doxorubicin in a cancer-mimicked environment. The drugs are compartmentalized in a shell (doxorubicin, Dox) and a core (docetaxel, Dtxl) with loading contents of ∼1.2 and ∼2.06%, respectively. Carboxymethyl chitosan with both amine and carboxyl groups act as a polyampholyte in diminishing ζ-potential of nanoparticles from fairly negative (-13 mV) to near neutral (-2 mV) while moving from a physiological pH (7.4) to an acidic tumor pH (6) that can help the nanoparticles to accumulate and release the drug on-site. The dual-drug formulation was found to carry a clinically comparable 1.7:1 weight ratio of Dtxl/Dox, nanoengineered for the sequential release of Dox followed by Dtxl. Single and engineered combinatorial nanoformulations show better growth inhibition toward three different cancer cells compared to free drug treatment. Importantly, Dox-Dtxl cmcPLGA nanoparticles scored synergism with combination index values between 0.2 and 0.3 in BT549 (breast ductal carcinoma), PC3 (prostate cancer), and A549 (lung adenocarcinoma) cell lines, demonstrating significant cell growth inhibition at lower drug concentrations as compared to single-drug control groups. The observed promising performance of dual-drug formulation is due to the G2/M phase arrest and apoptosis.
Reference Key
shanavas2019polymericacs Use this key to autocite in the manuscript while using SciMatic Manuscript Manager or Thesis Manager
Authors Shanavas, Asifkhan;Jain, Nishant K;Kaur, Navneet;Thummuri, Dinesh;Prasanna, Maruthi;Prasad, Rajendra;Naidu, Vegi Ganga Modi;Bahadur, Dhirendra;Srivastava, Rohit;
Journal ACS omega
Year 2019
DOI 10.1021/acsomega.9b02167
URL
Keywords

Citations

No citations found. To add a citation, contact the admin at info@scimatic.org

No comments yet. Be the first to comment on this article.