A System for Monitoring Breathing Activity Using an Ultrasonic Radar Detection with Low Power Consumption
Clicks: 283
ID: 75320
2019
Article Quality & Performance Metrics
Overall Quality
Improving Quality
0.0
/100
Combines engagement data with AI-assessed academic quality
Reader Engagement
Popular Article
63.9
/100
283 views
226 readers
Trending
AI Quality Assessment
Not analyzed
Abstract
Continuous monitoring of breathing activity plays a major role in detecting and classifying a breathing abnormality. This work aims to facilitate detection of abnormal breathing syndromes, including tachypnea, bradypnea, central apnea, and irregular breathing by tracking of thorax movement resulting from respiratory rhythms based on ultrasonic radar detection. This paper proposes a non-contact, non-invasive, low cost, low power consumption, portable, and precise system for simultaneous monitoring of normal and abnormal breathing activity in real-time using an ultrasonic PING sensor and microcontroller PIC18F452. Moreover, the obtained abnormal breathing syndrome is reported to the concerned physician’s mobile telephone through a global system for mobile communication (GSM) modem to handle the case depending on the patient’s emergency condition. In addition, the power consumption of the proposed monitoring system is reduced via a duty cycle using an energy-efficient sleep/wake scheme. Experiments were conducted on 12 participants without any physical contact at different distances of 0.5, 1, 2, and 3 m and the breathing rates measured with the proposed system were then compared with those measured by a piezo respiratory belt transducer. The experimental results illustrate the feasibility of the proposed system to extract breathing rate and detect the related abnormal breathing syndromes with a high degree of agreement, strong correlation coefficient, and low error ratio. The results also showed that the total current consumption of the proposed monitoring system based on the sleep/wake scheme was 6.936 mA compared to 321.75 mA when the traditional operation was used instead. Consequently, this led to a 97.8% of power savings and extended the battery life time from 8 h to approximately 370 h. The proposed monitoring system could be used in both clinical and home settings.Reference Key |
alnaji2019ajournal
Use this key to autocite in the manuscript while using
SciMatic Manuscript Manager or Thesis Manager
|
---|---|
Authors | Al-Naji, Ali;Al-Askery, Ali J.;Gharghan, Sadik Kamel;Chahl, Javaan; |
Journal | journal of sensor and actuator networks |
Year | 2019 |
DOI | DOI not found |
URL | |
Keywords |
Citations
No citations found. To add a citation, contact the admin at info@scimatic.org
Comments
No comments yet. Be the first to comment on this article.