Similarity of medical concepts in question and answering of health communities.
Clicks: 231
ID: 74937
2019
Article Quality & Performance Metrics
Overall Quality
Improving Quality
0.0
/100
Combines engagement data with AI-assessed academic quality
Reader Engagement
Emerging Content
71.7
/100
231 views
185 readers
Trending
AI Quality Assessment
Not analyzed
Abstract
The ability to automatically categorize submitted questions based on topics and suggest similar question and answer to the users reduces the number of redundant questions. Our objective was to compare intra-topic and inter-topic similarity between question and answers by using concept-based similarity computing analysis. We gathered existing question and answers from several popular online health communities. Then, Unified Medical Language System concepts related to selected questions and experts in different topics were extracted and weighted by term frequency -inverse document frequency values. Finally, the similarity between weighted vectors of Unified Medical Language System concepts was computed. Our result showed a considerable gap between intra-topic and inter-topic similarities in such a way that the average of intra-topic similarity (0.095, 0.192, and 0.110, respectively) was higher than the average of inter-topic similarity (0.012, 0.025, and 0.018, respectively) for questions of the top 3 popular online communities including NetWellness, WebMD, and Yahoo Answers. Similarity scores between the content of questions answered by experts in the same and different topics were calculated as 0.51 and 0.11, respectively. Concept-based similarity computing methods can be used in developing intelligent question and answering retrieval systems that contain auto recommendation functionality for similar questions and experts.Reference Key |
naderi2019similarityhealth
Use this key to autocite in the manuscript while using
SciMatic Manuscript Manager or Thesis Manager
|
---|---|
Authors | Naderi, Hamid;Madani, Sina;Kiani, Behzad;Etminani, Kobra; |
Journal | Health informatics journal |
Year | 2019 |
DOI | 10.1177/1460458219881333 |
URL | |
Keywords |
Citations
No citations found. To add a citation, contact the admin at info@scimatic.org
Comments
No comments yet. Be the first to comment on this article.