A Conceptual Framework for Circular Design

Clicks: 520
ID: 71091
2016
Design has been recognised in the literature as a catalyst to move away from the traditional model of take-make-dispose to achieve a more restorative, regenerative and circular economy. As such, for a circular economy to thrive, products need to be designed for closed loops, as well as be adapted to generate revenues. This should not only be at the point of purchase, but also during use, and be supported by low-cost return chains and reprocessing structures, as well as effective policy and regulation. To date, most academic and grey literature on the circular economy has focused primarily on the development of new business models, with some of the latter studies addressing design strategies for a circular economy, specifically in the area of resource cycles and design for product life extension. However, these studies primarily consider a limited spectrum of the technical and biological cycles where materials are recovered and restored and nutrients (e.g., materials, energy, water) are regenerated. This provides little guidance or clarity for designers wishing to design for new circular business models in practice. As such, this paper aims to address this gap by systematically analysing previous literature on Design for Sustainability (DfX) (e.g., design for resource conservation, design for slowing resource loops and whole systems design) and links these approaches to the current literature on circular business models. A conceptual framework is developed for circular economy design strategies. From this conceptual framework, recommendations are made to enable designers to fully consider the holistic implications for design within a circular economy.
Reference Key
moreno2016asustainability Use this key to autocite in the manuscript while using SciMatic Manuscript Manager or Thesis Manager
Authors Moreno, Mariale;Rios, Carolina De los;Rowe, Zoe;Charnley, Fiona;
Journal sustainability
Year 2016
DOI DOI not found
URL
Keywords

Citations

No citations found. To add a citation, contact the admin at info@scimatic.org

No comments yet. Be the first to comment on this article.