A New Period-Sequential Index Forecasting Algorithm for Time Series Data
Clicks: 178
ID: 69820
2019
A period-sequential index algorithm with sigma-pi neural network technology, which is called the (SPNN-PSI) method, is proposed for the prediction of time series datasets. Using the SPNN-PSI method, the cumulative electricity output (CEO) dataset, Volkswagen sales (VS) dataset, and electric motors exports (EME) dataset are tested. The results show that, in contrast to the moving average (MA), exponential smoothing (ES), and autoregressive integrated moving average (ARIMA) methods, the proposed SPNN-PSI method shows satisfactory forecasting quality due to lower error, and is more suitable for the prediction of time series datasets. It is also concluded that: There is a trend that the higher the correlation coefficient value of the reference historical datasets, the higher the prediction quality of SPNN-PSI method, and a higher value (>0.4) of correlation coefficient for SPNN-PSI method can help to improve occurrence probability of higher forecasting accuracy, and produce more accurate forecasts for the big datasets.
Reference Key |
jiang2019aapplied
Use this key to autocite in the manuscript while using
SciMatic Manuscript Manager or Thesis Manager
|
---|---|
Authors | Jiang, Hongyan;Fang, Dianjun;Spicher, Klaus;Cheng, Feng;Li, Boxing; |
Journal | applied sciences |
Year | 2019 |
DOI | DOI not found |
URL | |
Keywords |
Citations
No citations found. To add a citation, contact the admin at info@scimatic.org
Comments
No comments yet. Be the first to comment on this article.