Charge Separation in Epitaxial SnS/MoS Vertical Heterojunctions Grown by Low-Temperature Pulsed MOCVD.

Clicks: 236
ID: 66558
2019
Article Quality & Performance Metrics
Overall Quality Improving Quality
0.0 /100
Combines engagement data with AI-assessed academic quality
AI Quality Assessment
Not analyzed
Abstract
The weak van der Waals bonding between monolayers in layered materials enables fabrication of heterostructures without the constraints of conventional heteroepitaxy. Although many novel heterostructures have been created by mechanical exfoliation and stacking, the direct growth of 2D chalcogenide heterostructures creates new opportunities for large-scale integration. This paper describes the epitaxial growth of layered, -type tin sulfide (SnS) on -type molybdenum disulfide (MoS) by pulsed metal-organic chemical vapor deposition at 180 °C. The influence of precursor pulse and purge times on film morphology establishes growth conditions that favor layer-by-layer growth of SnS, which is critical for materials with layer-dependent electronic properties. Kelvin probe force microscopy measurements determine a built-in potential as high as 0.95 eV, and under illumination a surface photovoltage is generated, consistent with the expected Type-II band alignment for a multilayer SnS/MoS heterostructure. The bottom-up growth of a nonisostructural heterojunction comprising 2D semiconductors expands the combinations of materials available for scalable production of ultrathin devices with field-tunable responses.
Reference Key
olding2019chargeacs Use this key to autocite in the manuscript while using SciMatic Manuscript Manager or Thesis Manager
Authors Olding, Jack N;Henning, Alex;Dong, Jason T;Zhou, Qunfei;Moody, Michael J;Smeets, Paul J M;Darancet, Pierre;Weiss, Emily A;Lauhon, Lincoln J;
Journal ACS applied materials & interfaces
Year 2019
DOI 10.1021/acsami.9b14412
URL
Keywords

Citations

No citations found. To add a citation, contact the admin at info@scimatic.org

No comments yet. Be the first to comment on this article.