Characterization of cysteine sulfinic acid decarboxylase from Tribolium castaneum and its application in the production of β-alanine.
Clicks: 179
ID: 64902
2019
Article Quality & Performance Metrics
Overall Quality
Improving Quality
0.0
/100
Combines engagement data with AI-assessed academic quality
Reader Engagement
Emerging Content
75.2
/100
179 views
143 readers
Trending
AI Quality Assessment
Not analyzed
Abstract
β-alanine is a precursor for the production of pharmaceuticals and food additives that is produced by chemical methods in industry. As concerns about the environment and energy are increasing, biocatalysis using L-aspartate-α-decarboxylase (ADC) to convert L-aspartate to β-alanine has great potential. Many studies have focused on the catalytic activity of ADC, but these researches were limited to the prokaryotic enzymes. In this study, the gene encoding cysteine sulfinic acid decarboxylase from Tribolium castaneum (TcCSADC) was synthesized and overexpressed in Escherichia coli, and the enzyme was purified and characterized for the first time. It could use L-aspartate as its substrate, and the specific activity was 4.83 μmol/min/mg, which was much higher than that of ADCs from prokaryotes. A homology modeling assay indicated that TcCSADC had a dimer structure. Based on the evolutionary information from thermophilic bacteria, twenty-three variants were constructed to attempt to improve its abilities that transform L-aspartate to β-alanine. One mutant, G369A, was screened that had improved thermal stability. An analysis of the suitability of the catalytic process showed that the up to 162 g/L β-alanine could be produced using cells expressing the recombinant G369A variant, which is the highest yield to date. The CSADC from T. castaneum has important value for studies of the mechanism of ADCs and CSADCs from eukaryotes, and the engineered strain containing the G369A variant has great potential for the industrial production of β-alanine.Reference Key |
liu2019characterizationapplied
Use this key to autocite in the manuscript while using
SciMatic Manuscript Manager or Thesis Manager
|
---|---|
Authors | Liu, Zhongmei;Zheng, Wenhui;Ye, Wenqi;Wang, Chao;Gao, Yu;Cui, Wenjing;Zhou, Zhemin; |
Journal | Applied microbiology and biotechnology |
Year | 2019 |
DOI | 10.1007/s00253-019-10139-z |
URL | |
Keywords |
Citations
No citations found. To add a citation, contact the admin at info@scimatic.org
Comments
No comments yet. Be the first to comment on this article.