Phospholipids are A Potentially Important Source of Tissue Biomarkers for Hepatocellular Carcinoma: Results of a Pilot Study Involving Targeted Metabolomics.

Clicks: 326
ID: 64343
2019
Article Quality & Performance Metrics
Overall Quality Improving Quality
0.0 /100
Combines engagement data with AI-assessed academic quality
AI Quality Assessment
Not analyzed
Abstract
Hepatocellular carcinoma (HCC) pathogenesis involves the alteration of multiple liver-specific metabolic pathways. We systematically profiled cancer- and liver-related classes of metabolites in HCC and adjacent liver tissues and applied supervised machine learning to compare their potential yield for HCC biomarkers.Tumor and corresponding liver tissue samples were profiled as follows: Bile acids by ultra-performance liquid chromatography (LC) coupled to tandem mass spectrometry (MS), phospholipids by LC-MS/MS, and other small molecules including free fatty acids by gas chromatography-time of flight MS. The overall classification performance of metabolomic signatures derived by support vector machine (SVM) and random forests machine learning algorithms was then compared across classes of metabolite.For each metabolite class, there was a plateau in classification performance with signatures of 10 metabolites. Phospholipid signatures consistently showed the highest discrimination for HCC followed by signatures derived from small molecules, free fatty acids, and bile acids with area under the receiver operating characteristic curve (AUC) values of 0.963, 0.934, 0.895, 0.695, respectively, for SVM-generated signatures comprised of 10 metabolites. Similar classification performance patterns were observed with signatures derived by random forests.Membrane phospholipids are a promising source of tissue biomarkers for discriminating between HCC tumor and liver tissue.
Reference Key
evangelista2019phospholipidsdiagnostics Use this key to autocite in the manuscript while using SciMatic Manuscript Manager or Thesis Manager
Authors Evangelista, Erin B;Kwee, Sandi A;Sato, Miles M;Wang, Lu;Rettenmeier, Christoph;Xie, Guoxiang;Jia, Wei;Wong, Linda L;
Journal Diagnostics (Basel, Switzerland)
Year 2019
DOI E167
URL
Keywords

Citations

No citations found. To add a citation, contact the admin at info@scimatic.org

No comments yet. Be the first to comment on this article.