Nonlinear Blind Source Separation and Fault Feature Extraction Method for Mining Machine Diagnosis
Clicks: 185
ID: 55819
2019
Article Quality & Performance Metrics
Overall Quality
Improving Quality
0.0
/100
Combines engagement data with AI-assessed academic quality
Reader Engagement
Emerging Content
0.3
/100
1 views
1 readers
Trending
AI Quality Assessment
Not analyzed
Abstract
Mining machines are strongly nonlinear systems, and their transmission vibration signals are nonlinear mixtures of different kinds of vibration sources. In addition, vibration signals measured by the accelerometer are contaminated by noise. As a result, it is inefficient and ineffective for the blind source separation (BSS) algorithm to separate the critical independent sources associated with the transmission fault vibrations. For this reason, a new method based on wavelet de-noising and nonlinear independent component analysis (ICA) is presented in this paper to tackle the nonlinear BSS problem with additive noise. The wavelet de-noising approach was first employed to eliminate the influence of the additive noise in the BSS procedure. Then, the radial basis function (RBF) neural network combined with the linear ICA was applied to the de-noised vibration signals. Vibration sources involved with the machine faults were separated. Subsequently, wavelet package decomposition (WPD) was used to extract distinct fault features from the source signals. Lastly, an RBF classifier was used to recognize the fault patterns. Field data acquired from a mining machine was used to evaluate and validate the proposed diagnostic method. The experimental analysis results show that critical fault vibration source component can be separated by the proposed method, and the fault detection rate is superior to the linear ICA based approaches.Reference Key |
ding2019nonlinearapplied
Use this key to autocite in the manuscript while using
SciMatic Manuscript Manager or Thesis Manager
|
---|---|
Authors | Ding, Hua;Wang, Yiliang;Yang, Zhaojian;Pfeiffer, Olivia; |
Journal | applied sciences |
Year | 2019 |
DOI | DOI not found |
URL | |
Keywords |
Citations
No citations found. To add a citation, contact the admin at info@scimatic.org
Comments
No comments yet. Be the first to comment on this article.