Effects of degradation products of biomedical magnesium alloys on nitric oxide release from vascular endothelial cells.
Clicks: 315
ID: 52771
Article Quality & Performance Metrics
Overall Quality
Improving Quality
0.0
/100
Combines engagement data with AI-assessed academic quality
Reader Engagement
Steady Performance
68.4
/100
315 views
252 readers
Trending
AI Quality Assessment
Not analyzed
Nitric oxide (NO) released by vascular endothelial cells (VECs), as a functional factor and signal pathway molecule, plays an important role in regulating vasodilation, inhibiting thrombosis, proliferation and inflammation. Therefore, numerous researches have reported the relationship between the NO level in VECs and the cardiovascular biomaterials' structure/functions. In recent years, biomedical magnesium (Mg) alloys have been widely studied and rapidly developed in the cardiovascular stent field for their biodegradable absorption property. However, influence of the Mg alloys' degradation products on VEC NO release is still unclear. In this work, Mg-Zn-Y-Nd, an Mg alloy widely applied on the biodegradable stent research, was investigated on the influence of the degradation time, the concentration and reaction time of degradation products on VEC NO release. The data showed that the degradation product concentration and the reaction time of degradation products had positive correlation with NO release, and the degradation time had negative correlation with NO release. All these influencing factors were controlled by the Mg alloy degradation behaviors. It was anticipated that it might make sense for the cardiovascular Mg alloy design aiming at VEC NO release and therapy.
Reference Key |
wangeffectsmedical
Use this key to autocite in the manuscript while using
SciMatic Manuscript Manager or Thesis Manager
|
---|---|
Authors | Wang, Shuo;Zhu, Shi-Jie;Zhang, Xue-Qi;Li, Jing-An;Guan, Shao-Kang; |
Journal | Medical gas research |
Year | Year not found |
DOI | 10.4103/2045-9912.266991 |
URL | |
Keywords |
Citations
No citations found. To add a citation, contact the admin at info@scimatic.org
Comments
No comments yet. Be the first to comment on this article.