Evaluation of EMG processing techniques using Information Theory

Clicks: 517
ID: 50461
2010

Abstract

Background

Electromyographic signals can be used in biomedical engineering and/or rehabilitation field, as potential sources of control for prosthetics and orthotics. In such applications, digital processing techniques are necessary to follow efficient and effectively the changes in the physiological characteristics produced by a muscular contraction. In this paper, two methods based on information theory are proposed to evaluate the processing techniques.

Methods

These methods determine the amount of information that a processing technique is able to extract from EMG signals. The processing techniques evaluated with these methods were: absolute mean value (AMV), RMS values, variance values (VAR) and difference absolute mean value (DAMV). EMG signals from the middle deltoid during abduction and adduction movement of the arm in the scapular plane was registered, for static and dynamic contractions. The optimal window length (segmentation), abduction and adduction movements and inter-electrode distance were also analyzed.

Results

Using the optimal segmentation (200 ms and 300 ms in static and dynamic contractions, respectively) the best processing techniques were: RMS, AMV and VAR in static contractions, and only the RMS in dynamic contractions. Using the RMS of EMG signal, variations in the amount of information between the abduction and adduction movements were observed.

Conclusions

Although the evaluation methods proposed here were applied to standard processing techniques, these methods can also be considered as alternatives tools to evaluate new processing techniques in different areas of electrophysiology.

Reference Key
j2010evaluationbiomedical Use this key to autocite in the manuscript while using SciMatic Manuscript Manager or Thesis Manager
Authors J, Felice Carmelo;C, Politti Julio;D, Farfán Fernando;
Journal biomedical engineering online
Year 2010
DOI DOI not found
URL
Keywords

Citations

No citations found. To add a citation, contact the admin at info@scimatic.org

No comments yet. Be the first to comment on this article.