Structural Modification in Carbon Nanotubes by Boron Incorporation

Clicks: 399
ID: 48833
2009

Abstract

We have synthesized boron-incorporated carbon nanotubes (CNTs) by decomposition of ferrocene and xylene in a thermal chemical vapor deposition set up using boric acid as the boron source. Scanning and transmission electron microscopy studies of the synthesized CNT samples showed that there was deterioration in crystallinity and improvement in alignment of the CNTs as the boron content in precursor solution increased from 0% to 15%. Raman analysis of these samples showed a shift of ~7 cm−1in wave number to higher side and broadening of the G band with increasing boron concentration along with an increase in intensity of the G band. Furthermore, there was an increase in the intensity of the D band along with a decrease in its wave number position with increase in boron content. We speculate that these structural modifications in the morphology and microstructure of CNTs might be due to the charge transfer from boron to the graphite matrix, resulting in shortening of the carbon–carbon bonds.

Reference Key
sangeeta2009structuralnanoscale Use this key to autocite in the manuscript while using SciMatic Manuscript Manager or Thesis Manager
Authors Sangeeta, Handuja;P, Srivastava;VD, Vankar;
Journal nanoscale research letters
Year 2009
DOI DOI not found
URL
Keywords

Citations

No citations found. To add a citation, contact the admin at info@scimatic.org

No comments yet. Be the first to comment on this article.