Impact of statins on cellular respiration and de-differentiation of myofibroblasts in human failing hearts.

Clicks: 267
ID: 43582
2019
Fibroblast to myofibroblast trans-differentiation with altered bioenergetics precedes cardiac fibrosis (CF). Either prevention of differentiation or promotion of de-differentiation could mitigate CF-related pathologies. We determined whether 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase inhibitors-statins, commonly prescribed to patients at risk of heart failure (HF)-can de-differentiate myofibroblasts, alter cellular bioenergetics, and impact the human ventricular fibroblasts (hVFs) in HF patients.Either in vitro statin treatment of differentiated myofibroblasts (n = 3-6) or hVFs, isolated from human HF patients under statin therapy (HF + statin) vs. without statins (HF) were randomly used (n = 4-12). In vitro, hVFs were differentiated by transforming growth factor-β1 (TGF-β1) for 72 h (TGF-72 h). Differentiation status and cellular oxygen consumption rate (OCR) were determined by α-smooth muscle actin (α-SMA) expression and Seahorse assay, respectively. Data are mean ± SEM except Seahorse (mean ± SD); P < 0.05, considered significant. In vitro, statins concentration-dependently de-differentiated the myofibroblasts. The respective half-maximal effective concentrations were 729 ± 13 nmol/L (atorvastatin), 3.6 ± 1 μmol/L (rosuvastatin), and 185 ± 13 nmol/L (simvastatin). Mevalonic acid (300 μmol/L), the reduced product of HMG-CoA, prevented the statin-induced de-differentiation (α-SMA expression: 31.4 ± 10% vs. 58.6 ± 12%). Geranylgeranyl pyrophosphate (GGPP, 20 μmol/L), a cholesterol synthesis-independent HMG-CoA reductase pathway intermediate, completely prevented the statin-induced de-differentiation (α-SMA/GAPDH ratios: 0.89 ± 0.05 [TGF-72 h + 72 h], 0.63 ± 0.02 [TGF-72 h + simvastatin], and 1.2 ± 0.08 [TGF-72 h + simvastatin + GGPP]). Cellular metabolism involvement was observed when co-incubation of simvastatin (200 nmol/L) with glibenclamide (10 μmol/L), a K channel inhibitor, attenuated the simvastatin-induced de-differentiation (0.84 ± 0.05). Direct inhibition of mitochondrial respiration by oligomycin (1 ng/mL) also produced a de-differentiation effect (0.33 ± 0.02). OCR (pmol O /min/μg protein) was significantly decreased in the simvastatin-treated hVFs, including basal (P = 0.002), ATP-linked (P = 0.01), proton leak-linked (P = 0.01), and maximal (P < 0.001). The OCR inhibition was prevented by GGPP (basal OCR [P = 0.02], spare capacity OCR [P = 0.008], and maximal OCR [P = 0.003]). Congruently, hVFs from HF showed an increased population of myofibroblasts while HF + statin group showed significantly reduced cellular respiration (basal OCR [P = 0.021], ATP-linked OCR [P = 0.047], maximal OCR [P = 0.02], and spare capacity OCR [P = 0.025]) and myofibroblast differentiation (α-SMA/GAPDH: 1 ± 0.19 vs. 0.23 ± 0.06, P = 0.01).This study demonstrates the de-differentiating effect of statins, the underlying GGPP sensitivity, reduced OCR with potential activation of K channels, and their impact on the differentiation magnitude of hVFs in HF patients. This novel pleiotropic effect of statins may be exploited to reduce excessive CF in patients at risk of HF.
Reference Key
emelyanova2019impactesc Use this key to autocite in the manuscript while using SciMatic Manuscript Manager or Thesis Manager
Authors Emelyanova, Larisa;Sra, Amar;Schmuck, Eric G;Raval, Amish N;Downey, Francis X;Jahangir, Arshad;Rizvi, Farhan;Ross, Gracious R;
Journal ESC heart failure
Year 2019
DOI 10.1002/ehf2.12509
URL
Keywords

Citations

No citations found. To add a citation, contact the admin at info@scimatic.org

No comments yet. Be the first to comment on this article.