Improving realism in patient-specific abdominal ultrasound simulation using CycleGANs.
Clicks: 140
ID: 41145
2019
In this paper, we propose to apply generative adversarial neural networks trained with a cycle consistency loss, or CycleGANs, to improve realism in ultrasound (US) simulation from computed tomography (CT) scans.A ray-casting US simulation approach is used to generate intermediate synthetic images from abdominal CT scans. Then, an unpaired set of these synthetic and real US images is used to train CycleGANs with two alternative architectures for the generator, a U-Net and a ResNet. These networks are finally used to translate ray-casting based simulations into more realistic synthetic US images.Our approach was evaluated both qualitatively and quantitatively. A user study performed by 21 experts in US imaging shows that both networks significantly improve realism with respect to the original ray-casting algorithm ([Formula: see text]), with the ResNet model performing better than the U-Net ([Formula: see text]).Applying CycleGANs allows to obtain better synthetic US images of the abdomen. These results can contribute to reduce the gap between artificially generated and real US scans, which might positively impact in applications such as semi-supervised training of machine learning algorithms and low-cost training of medical doctors and radiologists in US image interpretation.
Reference Key |
vitale2019improvinginternational
Use this key to autocite in the manuscript while using
SciMatic Manuscript Manager or Thesis Manager
|
---|---|
Authors | Vitale, Santiago;Orlando, José Ignacio;Iarussi, Emmanuel;Larrabide, Ignacio; |
Journal | international journal of computer assisted radiology and surgery |
Year | 2019 |
DOI | 10.1007/s11548-019-02046-5 |
URL | |
Keywords | Keywords not found |
Citations
No citations found. To add a citation, contact the admin at info@scimatic.org
Comments
No comments yet. Be the first to comment on this article.