Geometric differential evolution for combinatorial and programs spaces.

Clicks: 160
ID: 32644
2013
Article Quality & Performance Metrics
Overall Quality Improving Quality
0.0 /100
Combines engagement data with AI-assessed academic quality
AI Quality Assessment
Not analyzed
Geometric differential evolution (GDE) is a recently introduced formal generalization of traditional differential evolution (DE) that can be used to derive specific differential evolution algorithms for both continuous and combinatorial spaces retaining the same geometric interpretation of the dynamics of the DE search across representations. In this article, we first review the theory behind the GDE algorithm, then, we use this framework to formally derive specific GDE for search spaces associated with binary strings, permutations, vectors of permutations and genetic programs. The resulting algorithms are representation-specific differential evolution algorithms searching the target spaces by acting directly on their underlying representations. We present experimental results for each of the new algorithms on a number of well-known problems comprising NK-landscapes, TSP, and Sudoku, for binary strings, permutations, and vectors of permutations. We also present results for the regression, artificial ant, parity, and multiplexer problems within the genetic programming domain. Experiments show that overall the new DE algorithms are competitive with well-tuned standard search algorithms.
Reference Key
moraglio2013geometricevolutionary Use this key to autocite in the manuscript while using SciMatic Manuscript Manager or Thesis Manager
Authors Moraglio, A;Togelius, J;Silva, S;
Journal evolutionary computation
Year 2013
DOI 10.1162/EVCO_a_00099
URL
Keywords Keywords not found

Citations

No citations found. To add a citation, contact the admin at info@scimatic.org

No comments yet. Be the first to comment on this article.