Estimating Accident-Related Traumatic Injury Rate by Future Studies Models in Semnan Province, Iran

Clicks: 203
ID: 32625
2018
Article Quality & Performance Metrics
Overall Quality Improving Quality
0.0 /100
Combines engagement data with AI-assessed academic quality
AI Quality Assessment
Not analyzed
Abstract
Background: Any accident is a disturbance in the balance between the human system, vehicle, road and environment. Future prediction of traumatic accidents is a valuable factor for managers to make strategic decisions in the areas of safety, health and transportation. Materials and Methods: In this study, by using Grey Model (GM) (1.1), Rolling Grey Model (RGM), Fourier Grey Model (FGM) (1.1), survival modification model, ARIMA time series, harmonic pattern and statistical data, the number of traffic injuries referred to forensic medicine centers in Semnan Province between 2017 and 2020 were predicted based on the number of traffic injured in Semnan Province from March 2009 and March 2016 . Results: The mean absolute error percentage for the GM (1.1), RGM (1), FGM (1.1), survival model, ARIMA and harmonic models were 0.994, 0.082, 0.091, 0.105, 0.05, 0.11, respectively, indicating a greater accuracy of the ARIMA method, compared to the other methods. The number of road traffic injuries in Semnan Province is decreasing and will reach 4052 in 2020. Conclusion: ARIMA model is the best method of the future studies model for the number of injured patients referred to the forensic medicine centers in Semnan Province compared to other studied methods. Future studies model shows that the injuries caused by accidents in the province of Semnan are decreasing
Reference Key
omidi2018estimatinghealth Use this key to autocite in the manuscript while using SciMatic Manuscript Manager or Thesis Manager
Authors Omidi, Nabi;Omidi, Mohammad Reza;
Journal health in emergencies & disasters quarterly
Year 2018
DOI DOI not found
URL
Keywords Keywords not found

Citations

No citations found. To add a citation, contact the admin at info@scimatic.org

No comments yet. Be the first to comment on this article.