Robotic platform for microinjection into single cells in brain tissue.

Clicks: 218
ID: 28463
2019
Article Quality & Performance Metrics
Overall Quality Improving Quality
0.0 /100
Combines engagement data with AI-assessed academic quality
AI Quality Assessment
Not analyzed
Abstract
Microinjection into single cells in brain tissue is a powerful technique to study and manipulate neural stem cells. However, such microinjection requires expertise and is a low-throughput process. We developed the "Autoinjector", a robot that utilizes images from a microscope to guide a microinjection needle into tissue to deliver femtoliter volumes of liquids into single cells. The Autoinjector enables microinjection of hundreds of cells within a single organotypic slice, resulting in an overall yield that is an order of magnitude greater than manual microinjection. The Autoinjector successfully targets both apical progenitors (APs) and newborn neurons in the embryonic mouse and human fetal telencephalon. We used the Autoinjector to systematically study gap-junctional communication between neural progenitors in the embryonic mouse telencephalon and found that apical contact is a characteristic feature of the cells that are part of a gap junction-coupled cluster. The throughput and versatility of the Autoinjector will render microinjection an accessible high-performance single-cell manipulation technique and will provide a powerful new platform for performing single-cell analyses in tissue for bioengineering and biophysics applications.
Reference Key
shull2019roboticembo Use this key to autocite in the manuscript while using SciMatic Manuscript Manager or Thesis Manager
Authors Shull, Gabriella;Haffner, Christiane;Huttner, Wieland B;Kodandaramaiah, Suhasa B;Taverna, Elena;
Journal EMBO reports
Year 2019
DOI 10.15252/embr.201947880
URL
Keywords Keywords not found

Citations

No citations found. To add a citation, contact the admin at info@scimatic.org

No comments yet. Be the first to comment on this article.