Demand Forecasting using Long Short-Term Memory Neural Networks
Clicks: 18
ID: 282987
2020
Article Quality & Performance Metrics
Overall Quality
Improving Quality
0.0
/100
Combines engagement data with AI-assessed academic quality
Reader Engagement
Emerging Content
0.3
/100
1 views
1 readers
Trending
AI Quality Assessment
Not analyzed
Abstract
In this paper we investigate to what extent long short-term memory neural networks (LSTMs) are suitable for demand forecasting in the e-grocery retail sector. For this purpose, univariate as well as multivariate LSTM-based models were developed and tested for 100 fast-moving consumer goods in the context of a master's thesis. On average, the developed models showed better results for food products than the comparative models from both statistical and machine learning families. Solely in the area of beverages random forest and linear regression achieved slightly better results. This outcome suggests that LSTMs can be used for demand forecasting at product level. The performance of the models presented here goes beyond the current state of research, as can be seen from the evaluations based on a data set that unfortunately has not been publicly available to date.Reference Key |
neumann2020demand
Use this key to autocite in the manuscript while using
SciMatic Manuscript Manager or Thesis Manager
|
---|---|
Authors | Marta Gołąbek; Robin Senge; Rainer Neumann |
Journal | arXiv |
Year | 2020 |
DOI | DOI not found |
URL | |
Keywords |
Citations
No citations found. To add a citation, contact the admin at info@scimatic.org
Comments
No comments yet. Be the first to comment on this article.