Pagsusuri ng RNN-based Transfer Learning Technique sa Low-Resource Language
Clicks: 14
ID: 282301
2020
Low-resource languages such as Filipino suffer from data scarcity which makes
it challenging to develop NLP applications for Filipino language. The use of
Transfer Learning (TL) techniques alleviates this problem in low-resource
setting. In recent years, transformer-based models are proven to be effective
in low-resource tasks but faces challenges in accessibility due to its high
compute and memory requirements. For this reason, there's a need for a cheaper
but effective alternative. This paper has three contributions. First, release a
pre-trained AWD-LSTM language model for Filipino language. Second, benchmark
AWD-LSTM in the Hate Speech classification task and show that it performs on
par with transformer-based models. Third, analyze the the performance of
AWD-LSTM in low-resource setting using degradation test and compare it with
transformer-based models.
-----
Ang mga low-resource languages tulad ng Filipino ay gipit sa accessible na
datos kaya't mahirap gumawa ng mga applications sa wikang ito. Ang mga Transfer
Learning (TL) techniques ay malaking tulong para sa low-resource setting o mga
pagkakataong gipit sa datos. Sa mga nagdaang taon, nanaig ang mga
transformer-based TL techniques pagdating sa low-resource tasks ngunit ito ay
mataas na compute and memory requirements kaya nangangailangan ng mas mura pero
epektibong alternatibo. Ang papel na ito ay may tatlong kontribusyon. Una,
maglabas ng pre-trained AWD-LSTM language model sa wikang Filipino upang maging
tuntungan sa pagbuo ng mga NLP applications sa wikang Filipino. Pangalawa, mag
benchmark ng AWD-LSTM sa Hate Speech classification task at ipakita na kayang
nitong makipagsabayan sa mga transformer-based models. Pangatlo, suriin ang
performance ng AWD-LSTM sa low-resource setting gamit ang degradation test at
ikumpara ito sa mga transformer-based models.
Reference Key |
velasco2020pagsusuri
Use this key to autocite in the manuscript while using
SciMatic Manuscript Manager or Thesis Manager
|
---|---|
Authors | Dan John Velasco |
Journal | arXiv |
Year | 2020 |
DOI | DOI not found |
URL | |
Keywords |
Citations
No citations found. To add a citation, contact the admin at info@scimatic.org
Comments
No comments yet. Be the first to comment on this article.