GPT-4 performance on querying scientific publications: reproducibility, accuracy, and impact of an instruction sheet.

Clicks: 24
ID: 279337
2024
Article Quality & Performance Metrics
Overall Quality Improving Quality
0.0 /100
Combines engagement data with AI-assessed academic quality
AI Quality Assessment
Not analyzed
Abstract
Large language models (LLMs) that can efficiently screen and identify studies meeting specific criteria would streamline literature reviews. Additionally, those capable of extracting data from publications would enhance knowledge discovery by reducing the burden on human reviewers.We created an automated pipeline utilizing OpenAI GPT-4 32Ā K API version "2023-05-15" to evaluate the accuracy of the LLM GPT-4 responses to queries about published papers on HIV drug resistance (HIVDR) with and without an instruction sheet. The instruction sheet contained specialized knowledge designed to assist a person trying to answer questions about an HIVDR paper. We designed 60 questions pertaining to HIVDR and created markdown versions of 60 published HIVDR papers in PubMed. We presented the 60 papers to GPT-4 in four configurations: (1) all 60 questions simultaneously; (2) all 60 questions simultaneously with the instruction sheet; (3) each of the 60 questions individually; and (4) each of the 60 questions individually with the instruction sheet.GPT-4 achieved a mean accuracy of 86.9% - 24.0% higher than when the answers to papers were permuted. The overall recall and precision were 72.5% and 87.4%, respectively. The standard deviation of three replicates for the 60 questions ranged from 0 to 5.3% with a median of 1.2%. The instruction sheet did not significantly increase GPT-4's accuracy, recall, or precision. GPT-4 was more likely to provide false positive answers when the 60 questions were submitted individually compared to when they were submitted together.GPT-4 reproducibly answered 3600 questions about 60 papers on HIVDR with moderately high accuracy, recall, and precision. The instruction sheet's failure to improve these metrics suggests that more sophisticated approaches are necessary. Either enhanced prompt engineering or finetuning an open-source model could further improve an LLM's ability to answer questions about highly specialized HIVDR papers.
Reference Key
tao2024gpt4bmc Use this key to autocite in the manuscript while using SciMatic Manuscript Manager or Thesis Manager
Authors Tao, Kaiming;Osman, Zachary A;Tzou, Philip L;Rhee, Soo-Yon;Ahluwalia, Vineet;Shafer, Robert W;
Journal BMC medical research methodology
Year 2024
DOI 10.1186/s12874-024-02253-y
URL
Keywords

Citations

No citations found. To add a citation, contact the admin at info@scimatic.org

No comments yet. Be the first to comment on this article.