dry deposition of nitrogen compounds (no2, hno3, nh3), sulfur dioxide and ozone in west and central african ecosystems using the inferential method
Clicks: 147
ID: 257141
2013
This work is part of the IDAF program (IGAC-DEBITS-AFRICA) and is based on
the long-term monitoring of gas concentrations (1998–2007) established at
seven remote sites representative of major African ecosystems. Dry
deposition fluxes were estimated by the inferential method using on the one hand
surface measurements of gas concentrations (NO2, HNO3, NH3,
SO2 and O3) and on the other hand modeled exchange rates. Dry
deposition velocities (Vd) were calculated using the big-leaf model of
Zhang et al. (2003b). The bidirectional approach is used for NH3
surface–atmosphere exchange (Zhang et al., 2010). Surface and meteorological
conditions specific to IDAF sites have been used in the models of
deposition. The seasonal and annual mean variations of gaseous dry
deposition fluxes (NO2, HNO3, NH3, O3 and SO2) are
analyzed.
Along the latitudinal transect of ecosystems, the annual mean dry deposition fluxes of nitrogen compounds range from −0.4 to −0.8 kg N ha−1 yr−1 for NO2, from −0.7 to −1.0 kg N ha−1 yr−1 for HNO3 and from −0.7 to −8.3 kg N ha−1 yr−1 for NH3 over the study period (1998–2007). The total nitrogen dry deposition flux (NO2+HNO3+NH3) is more important in forests (−10 kg N ha−1 yr−1) than in wet and dry savannas (−1.6 to −3.9 kg N ha−1 yr−1). The annual mean dry deposition fluxes of ozone range between −11 and −19 kg ha−1 yr−1 in dry and wet savannas, and −11 and −13 kg ha−1 yr−1 in forests. Lowest O3 dry deposition fluxes in forests are correlated to low measured O3 concentrations, lower by a factor of 2–3, compared to other ecosystems. Along the ecosystem transect, the annual mean of SO2 dry deposition fluxes presents low values and a small variability (−0.5 to −1 kg S ha−1 yr−1). No specific trend in the interannual variability of these gaseous dry deposition fluxes is observed over the study period.
Along the latitudinal transect of ecosystems, the annual mean dry deposition fluxes of nitrogen compounds range from −0.4 to −0.8 kg N ha−1 yr−1 for NO2, from −0.7 to −1.0 kg N ha−1 yr−1 for HNO3 and from −0.7 to −8.3 kg N ha−1 yr−1 for NH3 over the study period (1998–2007). The total nitrogen dry deposition flux (NO2+HNO3+NH3) is more important in forests (−10 kg N ha−1 yr−1) than in wet and dry savannas (−1.6 to −3.9 kg N ha−1 yr−1). The annual mean dry deposition fluxes of ozone range between −11 and −19 kg ha−1 yr−1 in dry and wet savannas, and −11 and −13 kg ha−1 yr−1 in forests. Lowest O3 dry deposition fluxes in forests are correlated to low measured O3 concentrations, lower by a factor of 2–3, compared to other ecosystems. Along the ecosystem transect, the annual mean of SO2 dry deposition fluxes presents low values and a small variability (−0.5 to −1 kg S ha−1 yr−1). No specific trend in the interannual variability of these gaseous dry deposition fluxes is observed over the study period.
Reference Key |
adon2013atmosphericdry
Use this key to autocite in the manuscript while using
SciMatic Manuscript Manager or Thesis Manager
|
---|---|
Authors | ;M. Adon;C. Galy-Lacaux;C. Delon;V. Yoboue;F. Solmon;A. T. Kaptue Tchuente |
Journal | Journal of agricultural and food chemistry |
Year | 2013 |
DOI | 10.5194/acp-13-11351-2013 |
URL | |
Keywords |
Citations
No citations found. To add a citation, contact the admin at info@scimatic.org
Comments
No comments yet. Be the first to comment on this article.