introducing cozigam: an r package for unconstrained and constrained zero-inflated generalized additive model analysis

Clicks: 167
ID: 255300
2010
Article Quality & Performance Metrics
Overall Quality Improving Quality
0.0 /100
Combines engagement data with AI-assessed academic quality
AI Quality Assessment
Not analyzed
Abstract
Zero-inflation problem is very common in ecological studies as well as other areas. Nonparametric regression with zero-inflated data may be studied via the zero-inflated generalized additive model (ZIGAM), which assumes that the zero-inflated responses come from a probabilistic mixture of zero and a regular component whose distribution belongs to the 1-parameter exponential family. With the further assumption that the probability of non-zero-inflation is some monotonic function of the mean of the regular component, we propose the constrained zero-inflated generalized additive model (COZIGAM) for analyzingzero-inflated data. When the hypothesized constraint obtains, the new approach provides a unified framework for modeling zero-inflated data, which is more parsimonious and efficient than the unconstrained ZIGAM. We have developed an R package COZIGAM which contains functions that implement an iterative algorithm for fitting ZIGAMs and COZIGAMs to zero-inflated data basedon the penalized likelihood approach. Other functions included in the package are useful for model prediction and model selection. We demonstrate the use of the COZIGAM package via some simulation studies and a real application.
Reference Key
liu2010journalintroducing Use this key to autocite in the manuscript while using SciMatic Manuscript Manager or Thesis Manager
Authors ;Hai Liu;Kung-Sik Chan
Journal open geospatial data, software and standards
Year 2010
DOI DOI not found
URL
Keywords

Citations

No citations found. To add a citation, contact the admin at info@scimatic.org

No comments yet. Be the first to comment on this article.