Recent Applications of Interfacial Exciplex as Ideal Host of Power-Efficient OLEDs

Clicks: 356
ID: 2371
2019
Currently, exploring the applications of intermolecular donor-acceptor exciplex couple as host of OLEDs with phosphorescence, thermally activated delayed fluorescence (TADF) or fluorescence emitter as dopant is a hot topic. Compared to other host strategies, interfacial exciplex has the advantage in various aspects, such as barrier-free charge injection, unimpeded charge transport, and the energy-saving direct exciton formation process at the “Well”-like heterojunction interface region. Most importantly, due to a very fast and efficient reverse intersystem-crossing (RISC) process, such a host is capable of regulating singlet/triplet exciton populations in itself as well as in the dopant emitters both under photoluminescent (PL) and electroluminescent (EL) driving conditions. In this mini-review, we briefly summarize and comment on recent applications of this ideal host in OLEDs (including both thermal-evaporation OLEDs and solution-processed OLEDs) with diverse emitters, e.g., fluorescence, phosphorescence, delayed fluorescence, or others. Special attention is given to illustrate the peculiar achievement of high overall EL performance with superiorities of low driving voltages, slow roll-off rate, high power efficiencies and satisfied device lifetime using this host strategy, which is then concluded by personal perspectives on the relevant next-step in this field.
Reference Key
zhang2019recentfrontiers Use this key to autocite in the manuscript while using SciMatic Manuscript Manager or Thesis Manager
Authors Zhang, Baohua;Xie, Zhiyuan;
Journal Frontiers in chemistry
Year 2019
DOI DOI not found
URL
Keywords Keywords not found

Citations

No citations found. To add a citation, contact the admin at info@scimatic.org

No comments yet. Be the first to comment on this article.