Day-Ahead Electric Load Forecasting for the Residential Building with a Small-Size Dataset Based on a Self-Organizing Map and a Stacking Ensemble Learning Method

Clicks: 321
ID: 2307
2019
Article Quality & Performance Metrics
Overall Quality Improving Quality
0.0 /100
Combines engagement data with AI-assessed academic quality
AI Quality Assessment
Not analyzed
Abstract
Electric load forecasting for buildings is important as it assists building managers or system operators to plan energy usage and strategize accordingly. Recent increases in the adoption of advanced metering infrastructure (AMI) have made building electrical consumption data available, and this has increased the feasibility of data-driven load forecasting. Self-organizing map (SOM) has been successfully utilized to cluster a dataset into subsets containing similar data points. These subsets are then used to train the forecasting models to improve forecasting accuracy. However, some buildings may have insufficient data since newly installed monitoring devices such as AMI have no choice but to collect a limited amount of data. Using a clustering technique on small datasets could lead to overfitting when using forecasting models following an SOM network to be trained with clusters. This results in a relatively high generalization error. In this study, we propose to address this problem by employing the stacking ensemble learning method (SELM) that is well-known for its generalization ability. An experimental study was conducted using the electricity consumption data of an actual institutional building and meteorological data. Our proposed model outperformed other baseline models, which means it successfully mitigates the effect of overfitting.
Reference Key
lee2019dayaheadapplied Use this key to autocite in the manuscript while using SciMatic Manuscript Manager or Thesis Manager
Authors Lee, Jaehyun;Kim, Jinho;Ko, Woong;
Journal applied sciences
Year 2019
DOI DOI not found
URL
Keywords Keywords not found

Citations

No citations found. To add a citation, contact the admin at info@scimatic.org

No comments yet. Be the first to comment on this article.