brown carbon aerosols from burning of boreal peatlands: microphysical properties, emission factors, and implications for direct radiative forcing

Clicks: 170
ID: 227102
2016
Article Quality & Performance Metrics
Overall Quality Improving Quality
0.0 /100
Combines engagement data with AI-assessed academic quality
AI Quality Assessment
Not analyzed
Abstract
The surface air warming over the Arctic has been almost twice as much as the global average in recent decades. In this region, unprecedented amounts of smoldering peat fires have been identified as a major emission source of climate-warming agents. While much is known about greenhouse gas emissions from these fires, there is a knowledge gap on the nature of particulate emissions and their potential role in atmospheric warming. Here, we show that aerosols emitted from burning of Alaskan and Siberian peatlands are predominantly brown carbon (BrC) – a class of visible light-absorbing organic carbon (OC) – with a negligible amount of black carbon content. The mean fuel-based emission factors for OC aerosols ranged from 3.8 to 16.6 g kg−1. Their mass absorption efficiencies were in the range of 0.2–0.8 m2 g−1 at 405 nm (violet) and dropped sharply to 0.03–0.07 m2 g−1 at 532 nm (green), characterized by a mean Ångström exponent of  ≈  9. Electron microscopy images of the particles revealed their morphologies to be either single sphere or agglomerated “tar balls”. The shortwave top-of-atmosphere aerosol radiative forcing per unit optical depth under clear-sky conditions was estimated as a function of surface albedo. Only over bright surfaces with albedo greater than 0.6, such as snow cover and low-level clouds, the emitted aerosols could result in a net warming (positive forcing) of the atmosphere.
Reference Key
chakrabarty2016atmosphericbrown Use this key to autocite in the manuscript while using SciMatic Manuscript Manager or Thesis Manager
Authors ;R. K. Chakrabarty;M. Gyawali;R. L. N. Yatavelli;R. L. N. Yatavelli;A. Pandey;A. C. Watts;J. Knue;L.-W. A. Chen;L.-W. A. Chen;R. R. Pattison;A. Tsibart;V. Samburova;H. Moosmüller
Journal Journal of agricultural and food chemistry
Year 2016
DOI 10.5194/acp-16-3033-2016
URL
Keywords

Citations

No citations found. To add a citation, contact the admin at info@scimatic.org

No comments yet. Be the first to comment on this article.