Subject-specific responses to an adaptive ankle prosthesis during incline walking.
Clicks: 235
ID: 22400
2019
Article Quality & Performance Metrics
Overall Quality
Improving Quality
0.0
/100
Combines engagement data with AI-assessed academic quality
Reader Engagement
Steady Performance
69.8
/100
235 views
188 readers
Trending
AI Quality Assessment
Not analyzed
Abstract
Individuals with lower-limb amputation often have difficulty walking on slopes, in part due to limitations of conventional prosthetic feet. Conventional prostheses have fixed ankle set-point angles and cannot fully replicate able-bodied ankle dynamics. Microprocessor-controlled ankles have been developed to help overcome these limitations. The objective of this study was to characterize how the slope adaptation feature of a microprocessor-controlled ankle affected individual prosthesis user gait biomechanics during sloped walking. Previous studies on similar microprocessor-controlled ankles have focused on group-level results (inter-subject mean), but did not report individual subject results. Our study builds upon prior work and provides new insight by presenting subject-specific results and investigating to what extent individual responses agree with the group-level results. We performed gait analysis on seven individuals with unilateral transtibial amputation while they walked on a 7.5° incline with a recently redesigned microprocessor-controlled ankle that adjusts ankle set-point angle to the slope. We computed gait kinematics and kinetics, and compared how users walked with vs. without this set-point adjustment. The microprocessor-controlled ankle increased minimum toe clearance for all subjects. Despite the microprocessor-controlled ankle behaving similarly for each user, we observed marked differences in individual responses. For instance, two users switched from a forefoot landing pattern with the microprocessor-controlled ankle locked at neutral angle to rearfoot landing when the microprocessor-controlled ankle adapted to the slope, while two maintained a forefoot and three maintained a rearfoot landing pattern across conditions. Changes in knee angle and moment were also subject-specific. Individual user responses were often not well represented by inter-subject mean. Although the prevailing experimental paradigm in prosthetic gait analysis studies is to focus on group-level analysis, our findings call attention to the high inter-subject variability which may necessitate alternative experimental approaches to assess prosthetic interventions.Reference Key |
lamers2019subjectspecificjournal
Use this key to autocite in the manuscript while using
SciMatic Manuscript Manager or Thesis Manager
|
---|---|
Authors | Lamers, Erik P;Eveld, Maura E;Zelik, Karl E; |
Journal | journal of biomechanics |
Year | 2019 |
DOI | S0021-9290(19)30479-8 |
URL | |
Keywords | Keywords not found |
Citations
No citations found. To add a citation, contact the admin at info@scimatic.org
Comments
No comments yet. Be the first to comment on this article.