constant hepatic atp concentrations during prolonged fasting and absence of effects of cerbomed nemos® on parasympathetic tone and hepatic energy metabolism

Clicks: 193
ID: 223450
2018
Objective: Brain insulin-induced improvement in glucose homeostasis has been proposed to be mediated by the parasympathetic nervous system. Non-invasive transcutaneous auricular vagus nerve stimulation (taVNS) activating afferent branches of the vagus nerve may prevent hyperglycemia in diabetes models. We examined the effects of 14-min taVNS vs sham stimulation by Cerbomed Nemos® on glucose metabolism, lipids, and hepatic energy homeostasis in fasted healthy humans (n = 10, age 51 ± 6 yrs, BMI 25.5 ± 2.7 kg/m2). Methods: Heart rate variability (HRV), reflecting sympathetic and parasympathetic nerve activity, was measured before, during and after taVNS or sham stimulation. Endogenous glucose production was determined using [6,6-2H2]glucose, and hepatic concentrations of triglycerides (HCL), adenosine triphosphate (ATP), and inorganic phosphate (Pi) were quantified from 1H/31P magnetic resonance spectroscopy at baseline and for 180 min following stimulation. Results: taVNS did not affect circulating glucose, free fatty acids, insulin, glucagon, or pancreatic polypeptide. Rates of endogenous glucose production (P = 0.79), hepatic HCL, ATP, and Pi were also not different (P = 0.91, P = 0.48 and P = 0.24) between taVNS or sham stimulation. Hepatic HCL, ATP, and Pi remained constant during prolonged fasting for 3 h. No changes in heart rate or shift in cardiac autonomic function from HRV towards sympathetic or parasympathetic predominance were detected. Conclusion: Non-invasive vagus stimulation by Cerbomed Nemos® does not acutely modulate the autonomic tone to the visceral organs and thereby does not affect hepatic glucose and energy metabolism. This technique is therefore unable to mimic brain insulin-mediated effects on peripheral homeostasis in humans. Author Video: Author Video Watch what authors say about their articles Keywords: Vagus nerve stimulation, Hepatic insulin sensitivity, Hepatic energy metabolism, Liver fat content
Reference Key
gancheva2018molecularconstant Use this key to autocite in the manuscript while using SciMatic Manuscript Manager or Thesis Manager
Authors ;Sofiya Gancheva;Alessandra Bierwagen;Daniel F. Markgraf;Gidon J. Bönhof;Kevin G. Murphy;Erifili Hatziagelaki;Jesper Lundbom;Dan Ziegler;Michael Roden
Journal Small (Weinheim an der Bergstrasse, Germany)
Year 2018
DOI DOI not found
URL
Keywords

Citations

No citations found. To add a citation, contact the admin at info@scimatic.org

No comments yet. Be the first to comment on this article.