bordetella pertussis, the causative agent of whooping cough, evolved from a distinct, human-associated lineage of b. bronchiseptica.
Clicks: 149
ID: 223238
2005
Article Quality & Performance Metrics
Overall Quality
0.0
/100
Combines engagement data with AI-assessed academic quality
Reader Engagement
0.0
/100
0 views
0 readers
AI Quality Assessment
Not analyzed
Bordetella pertussis, B. bronchiseptica, B. parapertussis(hu), and B. parapertussis(ov) are closely related respiratory pathogens that infect mammalian species. B. pertussis and B. parapertussis(hu) are exclusively human pathogens and cause whooping cough, or pertussis, a disease that has resurged despite vaccination. Although it most often infects animals, infrequently B. bronchiseptica is isolated from humans, and these infections are thought to be zoonotic. B. pertussis and B. parapertussis(hu) are assumed to have evolved from a B. bronchiseptica-like ancestor independently. To determine the phylogenetic relationships among these species, housekeeping and virulence genes were sequenced, comparative genomic hybridizations were performed using DNA microarrays, and the distribution of insertion sequence elements was determined, using a collection of 132 strains. This multifaceted approach distinguished four complexes, representing B. pertussis, B. parapertussis(hu), and two distinct B. bronchiseptica subpopulations, designated complexes I and IV. Of the two B. bronchiseptica complexes, complex IV was more closely related to B. pertussis. Of interest, while only 32% of the complex I strains were isolated from humans, 80% of the complex IV strains were human isolates. Comparative genomic hybridization analysis identified the absence of the pertussis toxin locus and dermonecrotic toxin gene, as well as a polymorphic lipopolysaccharide biosynthesis locus, as associated with adaptation of complex IV strains to the human host. Lipopolysaccharide structural diversity among these strains was confirmed by gel electrophoresis. Thus, complex IV strains may comprise a human-associated lineage of B. bronchiseptica from which B. pertussis evolved. These findings will facilitate the study of pathogen host-adaptation. Our results shed light on the origins of the disease pertussis and suggest that the association of B. pertussis with humans may be more ancient than previously assumed.
Reference Key |
noauthor2005plosbordetella
Use this key to autocite in the manuscript while using
SciMatic Manuscript Manager or Thesis Manager
|
---|---|
Authors | ; |
Journal | revista Árvore |
Year | 2005 |
DOI | DOI not found |
URL | |
Keywords |
Citations
No citations found. To add a citation, contact the admin at info@scimatic.org
Comments
No comments yet. Be the first to comment on this article.