investigation of different reducing agents of azo dyes from textile materials

Clicks: 217
ID: 222578
2017
Article Quality & Performance Metrics
Overall Quality Improving Quality
0.0 /100
Combines engagement data with AI-assessed academic quality
AI Quality Assessment
Not analyzed
Abstract
Toxicology of textiles is a subject of increasing interest, because of the presence of dangerous compounds in clothes generated from dyeing and finishing processes. In order to protect human health, numerous regulations (Oeko Tex Standard 100, REACH Regulation) limit the presence of dangerous chemicals, such as aromatic amines, generated by reductive cleavage of azo dyes, by no more than 30 mg/kg of textile material. The objective of this work was to investigate different methods of azo dyes reduction from colored textile specimens, in order to determine the procedure with the highest selectivity and sensibility. Aromatic amines are generated by chemical degradation achieved by the cleavage of the azo linkage using reducing agents.Different alternatives to sodium dithionite, reducing agent recommended by standard method ISO/FDIS 14362-1 were tested, such as: sodium sulfite and tin chloride. Also, xylene extraction, the common procedure for synthetic fibers was also performed for cotton, dyed with azo dye Direct Blue 6, in order to assess the reliability of common simultaneously extraction and reduction of direct dyes from natural fibres. Sodium ditionite remains the popular choice for reducing agent, since it provides efficient cleavage of azo linkage, generating specifically carcinogenic amines. Both liquid and gas chromatography analytical techniques were used for precise quantitative determination of generated compounds.
Reference Key
elena2017annalsinvestigation Use this key to autocite in the manuscript while using SciMatic Manuscript Manager or Thesis Manager
Authors ;VARZARU Elena;DUMITRESCU Iuliana;MITRAN Cornelia-Elena;IORDACHE Ovidiu-George
Journal hemijska industrija
Year 2017
DOI DOI not found
URL
Keywords

Citations

No citations found. To add a citation, contact the admin at info@scimatic.org

No comments yet. Be the first to comment on this article.