a lie connection between hamiltonian and lagrangian optics
Clicks: 116
ID: 189594
1997
It is shown that there is a non-Hamiltonian vector field that provides a Lie algebraic connection between Hamiltonian and Lagrangian optics. With the aid of this connection, geometrical optics can be formulated in such a way that all aberrations are attributed to ray transformations occurring only at lens surfaces. That is, in this formulation there are no aberrations arising from simple transit in a uniform medium. The price to be paid for this formulation is that the Lie algebra of Hamiltonian vector fields must be enlarged to include certain non-Hamiltonian vector fields. It is shown that three such vector fields are required at the level of third-order aberrations, and sufficient machinery is developed to generalize these results to higher order.
Reference Key |
dragt1997discretea
Use this key to autocite in the manuscript while using
SciMatic Manuscript Manager or Thesis Manager
|
---|---|
Authors | ;Alex J. Dragt |
Journal | Proteins |
Year | 1997 |
DOI | DOI not found |
URL | |
Keywords |
Citations
No citations found. To add a citation, contact the admin at info@scimatic.org
Comments
No comments yet. Be the first to comment on this article.